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The mechanical  behavior is repor ted for d ispersed sys tems  subject  to cyclic deformation 
with or without s teady-s ta te  flow. The mechanical  charac te r i s t i cs  a re  found to a l ter  con- 
siderably.  

Considerable theoret ical  and pract ical  impor tance  at taches to the effects of cyclic deformation on 
the mechanical  behavior of d ispersed sys tems ,  because we need to know the flow laws and because it may 
be possible to acce le ra te  the process ing  of such sys tems ,  in par t icular  dye and pigment pastes,  as well 
as facili tating the design of p rocesses  for  dispersing,  t ransport ing,  and drying such mater ia ls .  

There a re  many papers [1-12] on the effects of vibrat ion on the mechanical  proper t ies  of dispersed 
sys tems:  concre te  mixtures ,  bitumens, clay suspensions,  etc.,  and it has been shown that the viscous 
behavior is much affected by vibration. However, these papers  deal only with the effects of vibrat ion on 
the v i scos i ty  and shear  strength. 

One can obtain more  detailed information on the behavior of dispersed sys tems  by employing polymer 
r e s e a r c h  methods, in par t icular  cyclic shear ,  which gives the complex dynamic v iscos i ty  7" = 7 '  - i T ' .  
The measuremen t s  are  made with var ious  s t ra in  amplitudes 70 and c i rcu la r  f requencies  w = 2~f. F rom 
7o we get the amplitude ~/max = 70f of the deformation ra te ,  while f rom 7" we get the complex shear  modu-  
lus G* = V*iw = G' + iG~; where G' is the elast ic modulus and G" is the loss modulus. 

The behavior of a v iscoelas t ic  mater ia l  is considered to be linear if G* is a function of f requency 
alone (is not dependent on 70); the s t ruc ture  is then unaltered. However, nonlineari ty may set in at high 
amplitudes,  G* = r and the s t ruc ture  changes. The threshold for this can be detected f rom the onset 
of nonlinearity.  If the s t ruc ture  is disrupted, G' and G" should dec rease  as 7o increases .  

We have examined the nonlinear behavior of d ispersed sys tems  under cyclic and continuous shear  
s train,  alone or combined. 

We used copper phthalocyanin paste, which is used for bulk dyeing of v iscose  for  fiber production. 
The paste contains also in a 1 : 1 rat io NF d ispersa l  agent (sodium dinaphthyldimethane disulfonate) to 
prevent  part icle  clumping, with 72 wt. ~c dry  mat te r  overall .  The pigment part icle  size does not exceed 
5 pm. 

We used a coaxia l -cyl inder  v ib ro rheomete r  [14] at  22~ over the range 6-110 Hz. The methods of 
measuremen t  and calculation have previously been descr ibed [14, 15]. 

The following resul ts  were  obtained in cyclic shear.  

Figure  1 shows G'  and G" as functions of ~max for severa l  frequencies.  The G'(~raax ) and GT'(~/max) 
curves  show nonlinearity,  but the oscil lat ions remained reasonably  sinusoidal, so the l inear theory of 
v iscoelas t ic i ty  was used in the calculations. 

The G"(~/max) curves  for low 7 m a x  represen t  a l inear range, but this for G '@max  ) lies at values 
lower than those used here. Also, G' falls more  rapidly than G" in the nonlinear range. 
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1. Dependence on shear  ra te  amplitude for:  a) G';  b) 
G" with logco of: 1) 1.6; 2) 1.9; 3) 2.1; 4) 2.3; 5) 2.6. 

In general ,  nonlinearity is seen ear l ie r  on the G'(~max) curve for  any dispersed sys tem because such 
a sys tem does not allow considerable  revers ib le  deformation under flow conditions and is disrupted even 
by smal l  deformations [16]. 

G'  and G" increase  with f requency in the l inear and nonlinear ranges.  Nonlinearity involves e l imina-  
tion of the low-frequency part  of the complex dynamic modulus. Here there is a s imi la r i ty  in nonlinear 
behavior between dispersed (two-phase) and polymeric  (single-phase) systems.  

Figure  2 shows I~?*[ for  the smal les t  ~max  as a function of f requency (curve 1) and also the effec-  
tive v iscos i ty  ~? as a function of s t ra in  ra te  ~ as  measured  in the steady state (curve 2). The I~?*l(co) and 

(~) curves  a re  mutually displaced by a along the absc issa ,  and this quantity may be taken as approximately 
constant. The curves  coincide if ~ = aco, which distinguishes dispersed sys tems  f rom polymer ones, for 
which I~?*t =~7 for ~ = co. 

Figure  3 shows: I) I~?*l as a function of 7 m a x  for  var ious  co; Ii) ~ as a function of ~ for var ious co. 
To the left of the I~7"] (Ymax) curves  is shown the tendency towards l inear behavior. These curves  have a 
single envelope, and the cr i t ical  value T cr  cor responds  to the transit ion;  this value increases  with co. 

m a x  

The I~*[ (~max) and ~7(~) curves  confi rm the view [13] that the nonlinearity mechanisms are  s imi lar  in 
periodic shear  and s teady-s ta te  flow. 

The ]~?*l (+max) and ~('~) curves  are  mutually displaced on account of the relat ion between ~max  and 
~,  since 7 m a x  = 70f; also, ~c r  (nonlinearity transition) is readily determined as a function of co. As there 
is only 11% change in the frequency range used, one can put T~ r = const approximately.  Also, we put 
= aco for d ispersed sys tems  to get log '~ma x = log70(co/2~) = log~ + logT0/2wa. The envelope to curve 1 
cor responds  to 7o = 7 cr ,  so we have approximately  that logTCr /2~a  = 1.9 (constant), so curves  I and II 
may  be super imposed with little e r ro r .  

The following is the s t ra in  energy for a given ~ a x  and corresponding co: 

4~al~] *] (7~x) ~- 
E-- 

The cr i t ica l  E (nonlinearity transition) a re  independent of co to a f i r s t  approximation at Ecr  = 1.2 �9 102 erg  
/ c m  2, which is only 1 /400 of the Ecr  for  P-20 polyisobutene [13]. This would appear  to be the energy 
of the bonds between the part icles.  

We also used oscil lat ions super imposed on s teady-s ta te  flow [14]; Fig. 4 shows the shear  s t r e s s  
as  a function of f for var ious  ~ and log70 = 2.44 (constant). It is charac te r i s t i c  that there is a low- f re -  
quency part  (0-25 Hz), where d r / d f  is negative, a n d a p a r t  f > 25 Hz where ~- is nearly independent of f. 
This occurs  because:  1) the dynamic moduli and the res i s tance  to s teady-s ta te  flow increase  with f in the 
l inear  and nonlinear regions for To constant;  2) the s t ruc ture  is disrupted as 7 m a x  increases  in the non- 
l inear  region, so the dynamic moduli and the res i s t ance  decrease .  It may be that in the f i r s t  part  the fall 
in the moduli and res i s t ance  due to disruption a re  much m o r e  pronounced than the increase  with co, while 
in the second par t  the two fac tors  make equal contributions, and so r becomes independent of f. This ef-  
fect  has been observed [12] in the displacement  of d ispersed sys tems  by vibration. 

Figure 5 shows that the curves  shift to higher "~ and a l ter  in slope as To increases .  
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Fig.  2. 1) I~?*l a s  a funct ion of w; 2) ~7 as  a funct ion of  ~. 

Fig.  3. I) [~*] as  a funct ion of ~ m a x ;  I1) ~? as  a funct ion of ~ fo r  log ~0of: 1) 1.6;  2) 1.9;  3) 2.1; 4) 2.3; 
5) 2.6. Curve  6 is f r o m  expe r imen t .  

Fig.  4. Shear  s t r e s s  ~ as  a funct ion of f with logT0 
5) 1.25. 

= 2 . 4 4  and log~/ of: 1) 2.44; 2) 1-.15; 3) T.85; 4) 0.55; 
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Fig.  5. Re l a t i on  of 1- to ~ at 
20 Hz fo r  l ogT  of: 1) - ~ ;  2) 
2-.44; 3) 2-.72; 4) 2-.96; 5) 1-.25. 
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Fig. 6. Dependence of logT? at 20 Hz on: a) -y; b) log~- for log~ 0 
of: 1) -*% 2) 2.44; 3) 2-.72; 4) 2-.96; 5) 1-.25. 

F i g u r e  6 shows that  v ib r a t i on  g r e a t l y  r e d u c e s  ~?, e .g . ,  a t  20 Hz and logT0 = 1-.25, ~ is r educe d  by a 
f a c t o r  400 for  log ~ = 3.2. The ef fec t  is even  l a r g e r  a t  h igher  s t r a i n  ampl i tudes .  

These  ef fec ts  can be explained in t e r m s  of the f low m e c h a n i s m .  The flow r e s i s t a n c e  of a d i s p e r s e d  
s y s t e m  is c o m p o s e d  of: 1) tha t  r e s i s t a n c e  fo r  the med ium;  2) the d i s p l a c e m e n t  r e s i s t a n c e  of the pa r t i c l e s ;  
3) the flow r e s i s t a n c e  of the d i s p e r s i o n  m e d i u m  and pa r t i c l e s .  At  low ~- and 7 ,  w h e r e  the s t r u c t u r e  is only 
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slightly disrupted,  the vibrat ions reduce  ~? considerably;  higher ~- and y inc rease  the extent of s t ruc tu re  
disruption,  but at the same t ime the flow res i s t ance  of 3) inc reases ,  i .e. ,  the proport ion of the res i s t ance  
re la ted  to s t ruc tu re  disruption is reduced,  and hence there  is a marked reduct ion in ~ at low y.  Increased 
Y0 cause more  extensive disruption,  which resu l t s  in reduced ~. Oscil lat ions super imposed on a s teady 
flow at  low ~" and q grea t ly  r educe  the Newtonian viscosi ty ,  and the more  so the g rea te r  the oscil lat ion 
amplitude; but a d ispersed  sys tem behaves as a non-Newtonian liquid at high T and +. 
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NOTATION 

is the complex viscosi ty;  
a re  the r ea l  and imaginary  components of complex viscosi ty;  
is the deformat ion amplitude;  
is the c i r cu la r  frequency;  
is the frequency;  
i s  the amplitude of deformat ion ra te ;  
is the complex shear  modulus; 
a r e  the shear  and loss moduli; 
is the effect ive viscosi ty ;  
is the shear  ra te ;  
is the shea r  s t r e s s ;  
is the s t ra in  energy.  
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