MECHANICAL PARAMETERS OF DISPERSED SYSTEMS
UNDER CYCLIC DEFORMATION WITH VARIOUS AMPLITUDES

A, I Isaev, Yu. G. Yanovskii, UDC 532.135
G. V. Vinogradov, and L. A. Gordievskii

The mechanical behavior is reported for dispersed systems subject to cyclic deformation
with or without steady-state flow. The mechanical characteristics are found to alter con-
siderably.

Considerable theoretical and practical importance attaches to the effects of cyclic deformation on
the mechanical behavior of dispersed systems, because we need to know the flow laws and because it may
be possible to accelerate the processing of such systems, in particular dye and pigment pastes, as well
as facilitating the design of processes for dispersing, transporting, and drying such materials.

There are many papers [1-12] on the effects of vibration on the mechanical properties of dispersed
systems: concrete mixtures, bitumens, clay suspensions, etc., and it has been shown that the viscous
behavior is much affected by vibration. However, these papers deal only with the effects of vibration on
the viscosity and shear strength.

One can obtain more detailed information on the behavior of dispersed systems by employing polymer
research methods, in particular cyclic shear, which gives the complex dynamic viscosity n* =n' ~in™.
The measurements are made with various strain amplitudes vy, and circular frequencies w = 2nf. From
v We get the amplitude V.4, = v of of the deformation rate, while from n* we get the complex shear modu-
lus G* =n*iw = G' + iG"; where G' is the elastic modulus and G" is the loss modulus.

The behavior of a viscoelastic material is considered to be linear if G* is a function of frequency
alone (is not dependent on vyg); the structure is then unaltered. However, nonlinearity may set in at high
amplitudes, G* = y(y o), and the structure changes. The threshold for this can be detected from the onset
of nonlinearity. If the structure is disrupted, G' and G" should decrease as vy increases.

We have examined the nonlinear behavior of dispersed systems under cyclic and continuous shear
strain, alone or combined.

We used copper phthalocyanin paste, which is used for bulk dyeing of viscose for fiber production.
The paste contains also ina 1:1 ratio NT dispersal agent (sodium dinaphthyldimethane disulfonate) to
prevent particle clumping, with 72 wt. % dry matter overall. The pigment particle size does not exceed
5 um,

We used a coaxial-cylinder vibrorheometer [14] at 22°C over the range 6-110 Hz. The methods of
measurement and calculation have previously been described {14, 15].

The following results were obtained in cyclic shear.

Figure 1 shows G' and G" as functions of Ymax for several frequencies. The G'(Y max) and G"(Vymax)
curves show nonlinearity, but the oscillations remained reasonably sinusoidal, so the linear theory of
viscoelasticity was used in the calculations.

The G"(ymax) curves for low 7,55 represent a linear range, but this for G'(¥max) lies at values
lower than those used here. Also, G!' falls more rapidly than G" in the nonlinear range.
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Fig. 1. Dependence on shear rate amplitude for: a) G'; b)
G" with logw of: 1) 1.6; 2) 1.9; 3) 2.1; 4) 2.3; 5) 2.86.

In general, nonlinearity is seen earlier on the G'(ymax) curve for any dispersed system because such
a system does not allow considerable reversible deformation under flow conditions and is disrupted even
by small deformations [16].

G' and G" increase with frequency in the linear and nonlinear ranges. Nonlinearity involves elimina-
tion of the low~frequency part of the complex dynamic modulus. Here there is a similarity in nonlinear
behavior between dispersed (two-phase) and polymeric (single-phase) systems.

Figure 2 shows |n*| for the smallest ymax 25 a function of frequency (curve 1) and also the effec-
tive viscosity n as a function of strain rate 7 as measured in the steady state (curve 2). The |n*|(w) and
N(y) curves are mutually displaced by a along the abscissa, and this quantity may be taken as approximately
constant., The curves coincide if v = aw, which distinguishes dispersed systems from polymer ones, for
which [n*| =70 for v = w.

Figure 3 shows: I) |{n*| as a function of ymax for various w; II)  as a function of y for various w.
To the left of the |n*| (Y max) curves is shown the tendency towards linear behavior. These curves have a
single envelope, and the critical value V%ax corresponds to the transition; this value increases with w.
The |7n*| (¥ max) 2nd n(7) curves confirm the view [13] that the nonlinearity mechanisms are similar in
periodic shear and steady-state flow.

The |1*| (¥ pax) and 7(7) curves are mutually displaced on account of the relation between ¥y 2nd
v, since ymax = vof; also, 7§* (nonlinearity transition) is readily determined as a function of w. As there
is only 11% change in the frequency range used, one can put 'ygr = const approximately. Also, we put ¥
= aw for dispersed systems to get logV 55 = logyg{w/27) =logy + logvy,/2ma. The envelope to curve 1
corresponds to v, = v§¥, so we have approximately that logy§"/2ma = 1.9 (constant), so curves I and II
may be superimposed with little error.

The following is the strain energy for a given i’?rfax and corresponding w:

4| (Vi)
(0]

The critical E (nonlinearity transition) are independent of w to a first approximation at Eqp =1.2- 102 erg
/ cm?, which is only 1/400 of the Eqp for P-20 polyisobutene [13]. This would appear to be the energy
of the bonds between the particles.

We also used oscillations superimposed on steady-state flow [14]; Fig. 4 shows the shear stress 7
as a function of f for various ¥ and logy, = 2.44 (constant). It is characteristic that there is a low-fre-
quency part (0-25 Hz), where dr/df is negative, andapart f > 25 Hz where T is nearly independent of f.
This occurs because: 1) the dynamic moduli and the resistance to steady-state flow increase with f in the
linear and nonlinear regions for v, constant; 2) the structure is disrupted as ').’max increases in the non-
linear region, so the dynamic moduli and the resistance decrease. It may be that in the first part the fall
in the moduli and resistance due to disruption are much more pronounced than the increase with w, while
in the second part the two factors make equal contributions, and so r becomes independent of f. This ef~
fect has been observed [12] in the displacement of dispersed systems by vibration.

Figure 5 shows that the curves shift to higher v and alter in slope as vy, increases.
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Fig. 2. 1) |n*| as a function of w; 2) 7 as a function of 7.

Fig. 3. D) [n*| as a function of Ymax 1D 1 as a function of v for log wof: 1) 1.8; 2) 1.9; 3) 2.1; 4) 2.3;
5) 2.6. Curve 6 is from experiment.

Fig. 4. Shear stress T as a function of f with logy, = 2.44 and logy of: 1) 2.44; 2) 1.15; 3) 1.85; 4) 0.55;
5) 1.25.
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Fig. 5. Relation of 7 to 7 at
20 Hz fo_x: logy of: 1) —=; 2)
-4 2.44; 3) 2.72; 4) 2.96; 5) 1.25.
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Fig. 6. Dependence of logn at 20 Hz on: a) v; b) log r for logvy,
of: 1) —; 2) 2.44; 3) 2.72; 4) 2.96; 5) 1.25,

Figure 6 shows that vibration greatly reduces 7, e.g., at 20 Hz and logy, = 1.25, 7 is reduced by a
factor 400 for logr = 3.2. The effect is even larger at higher strain amplitudes.

These effects can be explained in terms of the flow mechanism. The flow resistance of a dispersed
system is composed of: 1) that resistance for the medium; 2) the displacement resistance of the particles;
3) the flow resistance of the dispersion medium and particles. At low 7and vy, where the structure is only
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slightly disrupted, the vibrations reduce n considerably; higher r and v increase the extent of structure
disruption, but at the same time the flow resistance of 3) increases, i.e., the proportion of the resistance
related to structure disruption is reduced, and hence there is a marked reduction in 1 at low y. Increased
v,y cause more extensive disruption, which results in reduced 7. Oscillations superimposed on a steady
flow at low 7 and v greatly reduce the Newtonian viscosity, and the more so the greater the oscillation
amplitude; but a dispersed system behaves as a non-Newtonian liquid at high v and v.

NOTATION

i is the complex viscosity;

7', n" are the real and imaginary components of complex viscosity;
Yo is the deformation amplitude;

w is the circular frequency;

£ is the frequency;

Ymax is the amplitude of deformation rate;

G* is the complex shear modulus;

G', G" are the shear and loss moduli;
M is the effective viscosity;

v is the shear rate;

T is the shear stress;

E is the strain energy.
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